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Berkeley UPC Team

• Project Lead: Katherine Yelick

• Team members: Filip Blagojevic, Dan 
Bonachea, Paul Hargrove, Costin Iancu, Seung-
Jai Min, Yili Zheng

• Former members: Christian Bell, Wei Chen, 
Jason Duell, Parry Husbands, Rajesh Nishtala , 
Mike Welcome

• A joint project of LBNL and UC Berkeley

2Workshop on Programming Environments for Emerging Parallel Systems6/22/2010



Motivation

• Scalable systems have either distributed memory or 
shared memory without cache coherency
– Clusters: Ethernet, Infiniband, CRAY XT, IBM BlueGene

– Hybrid nodes: CPU + GPU or other kinds of accelerators

– SoC: IBM Cell, Intel Single-chip Cloud Computer (SCC)

• Challenges of Message Passing programming models
– Difficult data partitioning for irregular applications

– Memory space starvation due to data replication

– Performance overheads from two-sided communication 
semantics 
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Partitioned Global Address Space

Thread 1 Thread 2 Thread 3 Thread 4

 Global data view abstraction for productivity
 Vertical partitions among threads for locality control
 Horizontal partitions between shared and private 

segments  for data placement optimizations
 Friendly to non-cache-coherent architectures
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PGAS Example: Global Matrix 
Distribution

Global Matrix View Distributed Matrix Storage
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UPC Overview

• PGAS dialect of ISO C99

• Distributed shared arrays

• Dynamic shared-memory allocation

• One-sided shared-memory communication 

• Synchronization: barriers, locks, memory 
fences

• Collective communication library

• Parallel I/O library
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Key Components for Scalability

• One-sided communication and active 
messages

• Efficient resource sharing for multi-core 
systems

• Non-blocking collective communication
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Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library 

Network Driver and OS Libraries

Translated C code with Runtime Calls
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Berkeley UPC Features

• Data transfer for complex data types (vector, 
indexed, stride)

• Non-blocking memory copy

• Point-to-point synchronization

• Remote atomic operations

• Active Messages

• Extension to UPC collectives

• Portable timers
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One-Sided vs. Two-Sided Messaging

• Two-sided messaging
– Message does not contain information about the final 

destination; need to look it up on the target node
– Point-to-point synchronization implied with all transfers

• One-sided messaging
– Message contains information about the final destination
– Decouple synchronization from data movement

dest. addr.

message id

data payload

data payload

one-sided put (e.g., UPC)

two-sided message (e.g., MPI)

network

interface

memory

host

CPU
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Active Messages

• Active messages = Data + Action

• Key enabling technology for both 
one-sided and two-sided 
communications
– Software implementation of Put/Get

– Eager and Rendezvous protocols

• Remote Procedural Calls
– Facilitate “owner-computes”

– Spawn asynchronous tasks

Request

Reply

A B

Request 
handler

Reply 
handler
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GASNet Bandwidth on BlueGene/P 

• Torus network
– Each node has six 850MB/s* 

bidirectional links

– Vary number of links from 1 to 6

• Consecutive non-blocking puts 
on the links (round-robin)

• Similar bandwidth for large-size 
messages

• GASNet outperforms MPI for 
mid-size messages
– Lower software overhead

– More overlapping

* Kumar et. al showed the maximum 
achievable bandwidth for DCMF 
transfers is 748 MB/s per link so we 
use this as our peak bandwidth
See “The deep computing messaging 
framework: generalized scalable 
message passing on the blue gene/P 
supercomputer”, Kumar et al. ICS08

G
O
O
D

See “Scaling Communication Intensive Applications on 
BlueGene/P Using One-Sided Communication and 
Overlap”,  Rajesh Nishtala, Paul Hargrove, Dan Bonachea, 
and Katherine Yelick, IPDPS 2009
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GASNet Bandwidth on Cray XT4 
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Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the 
Cray XT, Dan Bonachea, Paul Hargrove,  Michael Welcome, Katherine Yelick, CUG 2009
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GASNet Latency on Cray XT4 
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Slide source: Porting GASNet to Portals: Partitioned Global Address Space (PGAS) Language Support for the 
Cray XT, Dan Bonachea, Paul Hargrove,  Michael Welcome, Katherine Yelick, CUG 2009
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Execution Models on Multi-core 
– Process vs. Thread

CPU CPU CPU CPU

Physical Shared-memory Virtual Address Space

Map UPC threads to Processes Map UPC threads to Pthreads
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Point-to-Point Performance
– Process vs. Thread
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Application Performance 
– Process vs. Thread
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NAS Parallel Benchmarks
– Process vs. Thread
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Collective Communication for PGAS

• Communication patterns similar to MPI: 
broadcast, reduce, gather, scatter and alltoall

• Global address space enables one-sided 
collectives

• Flexible synchronization modes provide more 
communication and computation overlapping 
opportunities
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Collective Communication Topologies
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GASNet Module Organization

GASNet Collectives API

Portable 
Collectives

Point-to-point
Comm. Driver

Interconnect/Memory

Native Collectives

Collective
Comm. Driver

UPC Collectives Other PGAS Collectives

Auto-Tuner of Algorithms and Parameters

Shared-Memory 
Collectives
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Auto-tuning Collective Communication
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Offline tuning

 Optimize for platform 
common characteristics

 Minimize runtime 
tuning overhead

Online tuning

 Optimize for application 
runtime characteristics

 Refine offline tuning 
results

Performance
Influencing Factors

Performance
Tuning Space

Hardware
 CPU
 Memory system
 Interconnect

Software
 Application
 System software

Execution 
 Process/thread 

layout
 Input data set
 System workload

Algorithm selection
 Eager vs. rendezvous
 Put vs. get 
 Collection of well-

known algorithms
Communication topology 

 Tree type 
 Tree fan-out

Implementation-specific 
parameters 

 Pipelining depth
 Dissemination radix

6/22/2010



Broadcast Performance

Cray XT4 Nonblocking Broadcast (1024 Cores)
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Matrix-Multiplication on Cray XT4
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Choleskey Factorization on Sun 
Constellation (Infiniband) 
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FFT Performance on Cray XT4

(1024 Cores)
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FFT Performance on BlueGene/P
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MPI FFT of HPC Challenge as of July 09 is ~4.5 Tflops on 128k Cores.

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

o
p

s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs



Summary

• PGAS provides programming convenience similar to 
shared-memory models

• UPC has demonstrated good performance comparable 
to MPI at large scale.

• Interoperable with other programming models and 
languages including MPI, FORTRAN and C++

• Growing UPC community with actively developed and 
maintained software implementations 
– Berkeley UPC and GASNet: http://upc.lbl.gov

– Other UPC compilers: Cray UPC, GNU UPC, HP UPC and 
IBM UPC

– Tools: TotalView and Parallel Performance Wizard (PPW)
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